
GEM Document: Indexed Color Procedural Animation 
Title: Procedural Animation via Indexed Color Base and Grayscale-Derived Effects Version: 1.0 
(for colourIDEA.pdf) Date: May 29, 2025 (AEST) 

1. Concept Overview 💡 

This document outlines a technique for creating stylized, color-limited procedural animations. 
The core idea is to represent the animation's visual foundation as an indexed 256-color Base 
Image 🖼. This base image is derived by quantizing the first frame of a source GIF to a 
256-color palette. The animation is then driven by an Operation Data Script 📜 (.r1xa) whose 
parameters are primarily derived from analyzing grayscale versions of the source GIF frames. 
A custom renderer 🚀 reconstructs the color base image using the stored palette and applies 
the grayscale-derived effects to this color base, interpreting intensity targets to modulate colors. 

This approach aims to produce visually distinct animations with a compact representation for the 
effects, leveraging the efficiency of grayscale analysis while still rendering in color. 

 



2. Workflow and Components ⚙ 

1. Palette Generation and Base Image Creation (Python 🐍): 
 

○ The source GIF's first frame is loaded. 
○ It's quantized to a 256-color palette (e.g., using Pillow's 

image.quantize(colors=256)). 
○ This palette (256 RGB triplets) is stored. 
○ Grayscale equivalents for each palette color are calculated (e.g., using the 

luminosity method) and stored alongside the RGB palette. 
○ The first frame's pixel data is converted to indices (0-255) referencing this 

palette. 
○ Output: A custom binary file (.r1xi 💾 - Version 3) containing: 

■ Header (Magic, Version, Dimensions, BitsPerPixel=8, ColorMode for 
"Indexed", Background RGB). 

■ The 256-entry color palette (e.g., R,G,B per entry). 
■ The 256 grayscale equivalents corresponding to each palette entry. 
■ The indexed pixel data for the base image (1 byte per pixel). 

2. Grayscale-Based Analysis and Effects Script Generation (Python 🐍): 
 

○ The original GIF frames and the Base Image are converted to grayscale for 
analysis. 

○ For each Original_GIF_Frame_N (in grayscale) compared against 
Base_Image (in grayscale): 

■ Metrics like Region of Interest (ROI) of change, mean_diff within ROI, 
translation vectors (dx,dy), and frame duration ⏳ are calculated. 

■ Color Influence on Grayscale Target: The "brightness/color" effect 
parameter for the .r1xa script is derived by analyzing the original color 
content of Original_GIF_Frame_N within the ROI, converting its 
dominant or average color to a target grayscale value, or selecting an 
index from the palette's pre-calculated grayscale equivalents. 

○ Output: The Operation Data Script (.r1xa 📜) containing per-frame 
parameters: frame_index, ROI_coords, blur_radius, a 
target_grayscale_value_or_palette_index, translate_dx, 
translate_dy, and duration_ms. 

3. Color Rendering (JavaScript/Canvas 🚀): 
 

○ Initialization: 
■ Load and parse .r1xi: extract dimensions, palette (RGB values), 

grayscale equivalents map, and indexed pixel data. 



■ Reconstruct the full-color (256-color) Base Image onto an 
offscreenBaseCanvas by mapping each pixel index to its 
corresponding RGB color from the loaded palette. 

■ Load and parse .r1xa into an array of effects. 
○ Animation Loop: For each frame's data from .r1xa: 

■ Start with a new frame cleared to the background color (from .r1xi). 
■ ROI Snippet: Extract the relevant ROI from the color 

offscreenBaseCanvas onto a temporary snippet canvas. 
■ Apply Effects to Snippet: 

■ Blur: Apply blur_radius to the color snippet. 
■ Color/Brightness Modification: This is key. The 

target_grayscale_value_or_palette_index from .r1xa 
is used. The renderer might: 

■ Find the palette color whose grayscale equivalent is 
closest to the target. 

■ Shift the colors of the snippet pixels towards this target 
palette color (e.g., by adjusting hue/saturation/luminance, 
or by a direct color blend). 

■ Or, if a palette index is provided, directly use or blend 
towards that palette color. 

■ Translate & Draw: Draw the transformed color snippet onto the main 
display canvas at its translated position (roi.x + dx, roi.y + dy). 

■ Use duration_ms for frame timing. 

4. Visual Outcome and Goals 🎯 

● Stylized Color Output: The animation will be rendered in the 256 colors derived from 
the initial palette. This creates a distinct, retro, or intentionally limited-color aesthetic. 

● Fidelity for Palettized Originals: If the source GIF already used a 256-color (or less) 
palette, this method has the potential to replicate its look very closely. 

● "Artistic Degradation" for Full RGB Originals: Source GIFs with full color depth will 
be quantized, which is a form of artistic abstraction or "degradation" that becomes part of 
the style. 

● Compact Effects Script: The .r1xa remains small as it stores parameters derived 
largely from efficient grayscale analysis. 

 



5. Advantages 🏆 

● Color animation with efficient analysis: Combines the visual appeal of color with the 
processing simplicity of grayscale for deriving core motion and change. 

● Unique visual aesthetic: The indexed color approach yields a specific, stylized look. 
● Control over color mapping: The link between original colors and their representation 

in the limited palette (and how effects target them) can be tuned. 
● Data efficiency: Base image uses indexed color, and the effects script is compact. 

6. Challenges 🤔 

● Palette Quality: The initial palette generation is crucial. A poor palette will lead to a poor 
visual result. 

● Grayscale-to-Color Effect Mapping: The logic in the JavaScript renderer to interpret a 
grayscale-derived target (like a target_grayscale_value) and apply a meaningful 
modification to color pixels in the snippet is the most complex part of the rendering. It 
requires careful color theory application (e.g., HSL manipulation, weighted blending 
towards target palette colors). 

● Analysis Heuristics: The Python script still needs robust heuristics to translate 
grayscale differences into effective target_grayscale_value_or_palette_index 
parameters. 

This "Indexed Color" method offers a way to produce stylized color animations while keeping the 
core analysis grounded in more straightforward grayscale techniques. 

 


	GEM Document: Indexed Color Procedural Animation 
	1. Concept Overview 💡 
	 
	2. Workflow and Components ⚙️ 
	4. Visual Outcome and Goals 🎯 
	 
	5. Advantages 🏆 
	6. Challenges 🤔 


